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We consider an ellipsoidal crack and needle (of small, but finite thickness) in an 
anisotropic elastic medium and a homogeneous external field. We obtain and 
investigate the explicit expressions for the stresses on their surfaces. We show 

that by decreasing the thickness of the needle the stresses corresponding to any 
load tend to a finite limit, i. e. they do not contain singularities, while for the 
ellipsoidal crack a singularity arises if the external field contains a component 
normal to the plane of the crack. In the case of extension the maximum stress 
is always attained at the edge of the crack while in the case of pure shear, as a 

rule, in its small neighborhood. In the latter case there is a sharp peak of stresses 
and on the edge itself all the components of the stress tensor may vanish. This 
points to the necessity of investigating the stresses on the entire surface of the 

crack and not only in its characteristic points. 
By an ellipsoidal crack (needle) we will undestand an ellipsoidal cavity hav- 

ing one small (large) dimension in comparison with the other two dimensions. 
This allows us, at the computation of the stresses at the surface of the cavity, to 

restrict ourselves to the principal term of the expansion with respect to a corres- 
ponding small but finite parameter. The limiting case when the parameter tends 
to zero corresponds to the elliptic crack. In this case, only the stresses in the 

neighborhood of the crack or the limiting values of the nonsingular components 
of the stress tensor on the crack itself are meaningful. 

In most cases (see, for example [l] where there are other references) the ellip- 
tic cracks have been studied. The results for an ellipsoidal crack in an isotropic 
medium can be obtained by a limiting process from the known solutions for the 

ellipsoidal cavity constructed in p - 41 and which has been done in [5, 61. How- 
ever, the components of the stress tensor have been studied not on the entire sur- 
face of the crack but only at its edge. The stresses at the vertices of a spheroidal 
crack and needle in a transversely isotropic medium have been obtained in [i’] 
for external fields which do not have singularities. 

As opposed to the mentioned papers, here we consider an arbitrary anisotropic 
medium and we investigate the complete state of stress on the entire surface of 
an ellipsoidal crack and needle. Such an investigation turns out to be essential 
since in some cases there is an abrupt increase of stresses near the edge of the 
crack, although on the edge itself they are equal to zero. 

In this paper we make use of the general solution of the stress concentration 

problem on the surface of an ellipsoidal cavity in an anisotropic medium which 
has been obtained in [8]. In Sect. 1 we give some formulas from [S] which are 
necessary in what follows and we introduce parameters which are convenient 
for the limitimg processes. In Sects. 2 and 3 we obtain expressions for the stresses 
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on the surface of the ellipsoidal needle and crack. In Sects 4 and 5 we give a 
complete study of the stress concentrations at the surface of an ellipsoidal crack 
in an isotropic and also in an orthotropic medium for all cases of external homo- 

geneous fields. 

1. The stresses tip (n) at the surface of an ellipsoidal cavity in a homogeneous 
external field oshl* have the form [8] 

@ (n) = Fa3. . At* (n) c$’ (1.1) 

Here F (n) is the tensor coefficient of the stress concentration depending on the normal 

n to the surface of the ellipsoid 
xa-2x = za (a-*)$ =: 1, $8 = &3=s (1.2) 

with semiaxes uz (a = 1, 2, 3). The relation between the coordinates 2” of the points 
of the ellipsoid and the normal np is given by 

aan 
x==, -- 

d 
n= vai$-+ (1.3) 

na2n 

We represent the coefficient F (n) of the concentration in the form of the product of 

two factors 
Fai3. . htL (n) = B”‘“’ (n) (B,‘)oTx:~ (1.4) 

the first of which B (n) depends explicitly only on the tensor of the elastic constants 
cO.of the medium, while it depends implicitly on the parameters ur of the ellipsoid 
through the normal n. In the limiting cases of a needle and a crack B (I]) does not 
vary and, consequently, does not have singularities. In particular, for the isotropic medi- 
um with shear modulus p,, and Poisson’s ratio Y,, (x,, = 2p,, / 1 - vO) 

@” (n) = x0 [VO (&+Sa+ _ nansGa’ _ $$@) + !$? (6aa@r + 6a’$0 _ 

nana@+ _ nan+Gsa _ nPna(ja’ - nPns(jac) + n n a Pp n’ 1 (1.5) 
where 6as is the Kronecker symbol. The second factor in (1.4) is a constant tensor in- 

verse of the tensor B”d”P _ 1 ‘1; 1 1 Barh~ (n) dn 
(na%p 

(1.6) 

depends on the parameters of the ellipsoid (1.2) and, as it will be shown, becomes sin- 

gular in the case of a crack. 
For the limiting processes it is convenient to introduce the dimensionless parameters 

(1.7) 

Thecase a<l, E- 1 corresponds to the needle, while E< 1, a- 1 to the crack, 
and e < a < 1 to a narrow crack. We note that in all cases we have a = & < 1. 

Thus, the solution of the stress concentration problems for a needle and a crack redu- 

ces to the computation of the principal terms in the expansion of the tensor B,-l with 
respect to the corresponding small parameter. First we carry out this computation for a 

needle. 

2. In (1.6) we switch to the spherical coordinates cp, 0 with the polar axis along 
the axis of the needle, i.e. along x l. We perform the change of variable COS 8 = t 

and we set 
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al = a 4cdsaq, + E” sin%p, B (9% t) = B b @P! 0) (24 

Without loss of generality we can assume that B (cp, t) is an even function of t (only 
this component gives a contribution in the integral (1.6)). 

We have ‘zx 1 

For a needle a + 0, E - 1 and ,fi (t, a,) -+ 6 (t). Consequently, the principal term 

in the expansion of B, with respect to a has the form 
27s 

B (Q* 0) -drp CoS2 Q -+- E2 Sl ttZ Q 
0 

(2.2) 

Thus, for an arbitrary anisotropic medium the problem is reduced to the computation 

of a simple integral. If the tensor B,, has an inverse (det Boc# 0), then the coeffi- 

cient of the concentration tends to a constant value when a -+ 0, i.e. it has no singu- 
larity. The computations show that det B,, # 0 if the symmetry of the medium is 

not below the rhombic symmetry (orthotropic, hexagonal, cubic and others (*) ). Obvi- 
ously, this holds also in the case of an arbitrary anisotropy. The tensor of the elastic 
constants of the indicated media has nine nonzero components, denoted according to the 

usual rule by aaPP 
CO = Car3 (a, P== 1, 2, 3) 

co 
2323 _ 

- C44r co 
1313 = C 

567 co 
1212 z C66 

For the orthotropic medium all the nine components are essential, for the transversely 
isotropic medium only five components are essential 

li 
cl1 = c22, c12, cl3 = c23, c33, c44 = c55, %6 = '2 (Cl1 - Cl21 

for the cubic symmetry we have three consrants 

Cl1 = c2s = c33, Cl2 = Cl3 = C23r c44 = c55 = c66 

and, finally, for the isotropic medium 

c - ho, C44 = 12 - '12 (Cl1 - Cl2> = PO, Cl1 = h i- 2YO 

In all these cases the tensor B,, -r is found in explicit form. For its ~mpu~tion it 

is necessary to take nr = 0 in the tensor B (n) of [8J,insert the obtained expression 
into (2.2), integrate and invert the tensor B,,. However for the component of Boo-l 
with indices (aaSp) corresponding to extension along the axes, the expressions become 
cumbersome because it is necessary to invert a matrix of order three. Therefore here 

we give only the nonzero shear components 

*) Here and in the following we assume that the symmetry axes of the medium coin- 
cide with the axes of the ellipsoid. 
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Here u1 and u2 are the roots of the quadratic equation 

cssc&2 +- (C.&a3 - 2cssc** - c23 2) u + c22c44 = 0 

The computations are considerably simplified in the isotropic case. Taking into account 

(1.5). we obtain the nonzero components of B,o-l (qo=[2 p. (1 -f- ~o)]-~) 

(B&i),,,, = qat vGh12, = P~~hl = - l’orlo 

(B;;)2233 == - “lo (1 - 2y02), (B,-,1)m = rlo 11 + 2 (1 - 2.021El 

(2.4) 

Inserting Boo-’ into (1.4) we can obtain, according to (1.1). the stresses 6 (n) at the 
surface of the needle for an arbitrary external field oo. We note that the values of o (n) 
coincide with those obtained in n] at the characteristic points of the needle. 

The expressions (2.3) and (2.4) give an obvious mechanism for the appearance of the 
singularity at the conversion from a needle to a narrow crack, i. e. for E --f c : a singu- 

larity of order E-l appears only for external stresses o. confining components with the 
index 3. 

3, We consider an arbitrary crack t < 1, a - 1. In the same way as in the 
case of a needle, we switch in (1.6) to spherical coordinates ~1, 0, but with the polar 
axis oriented along x3. Setting 

E1 = l/cosZrp~~%*i,ii:~ ’ t=eose (3.1) 

and mainlining the definition (2.1) for B (rp, t), we find 

2n 1 

i?o=gi 
dcp 

co52 rp + a2 sin2 9 c 
B (cp, 1) f2 (t, El)dt 

0 '1 

f2 (4 El) = 51 
2 [I .- (1 - a2E,la) taf’y (3.2) 

We write the expansion of 3, as a function of E in the form 

B, = BOO + m,1 + 0 (P) (3.3) 

As opposed to the case of the needle, for the computation of the principal term in the 
expansion of Bow1 with respect to E we have to retain the first two terms in B, since 
the tensor Boo in (3.3) does not have an inverse, i. e. det Boo = 0. This can be veri- 
fied by simple computations if the symmetry of the medium is not below the rhombic 
symmetry. In order to show that det Li,, = 0, it is sufficient to show that all the com- 

ponents of the tensor B 00 containing the index 3 are equal to zero. In fact, as it will 
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be shown below, in the integral for Boo there occurs the tensor B (cp, 1) which corre- 

sponds to B (n) for n1 = n2 = 0, n3 = 1. But from the general expression for B(n), 
given in [8], it follows that in the case of a rhombic structure, the corresponding com- 
ponents of B (nj which contain the index 3 are equal to zero for ni = ns = 0. We 

should expect that this is true also for an arbitrary anisotropy. 

For the computation of Boo and Bol, we will consider fs (t, El) as a generalized 

function on the segment 1 tl < 1 with identified points f 1, i. e. on the circumfer- 
ence. This is possible by virtue of the fact that B (cp, t) is even and continuous. We 
can verify that for El + 0 

fz (h El) = 6 (t _t 1) + 2 (1 y t2)a(‘n + 0 G2) 
Substitution into (3.2) gives 

N.. 

Boo = & ” s B (~7 zlz 1) 
COS2q + uasin2cp 

dv 

0 

2x .l 

BOl= -$ i 
Q 

s 

B(cp, t) 

O (C0s2cp + x2~inacp)a/a _-l 

--B(cp, +i) dt 

(1 - t2p 

(3.4) 

where the latter integral is written in regularized form. We note that the obtained ex- 

pressions become considerably simpler for the circular (a = 1) and for the narrow 
(a (( 1) crack. In the isotropic case the integrals (3.4) can be easily computed and 

the inversion of the tensor (3.3) allows us to obtain explicit expressions for the compon- 
ents of the principal term of the expansion of B,-’ 

(BO1)n~s = & 1 - !Y 1 

(I- YO - ~9) E ( 1/l - as)+ a%K ( 1/m) E 

(B6)2323=&(1_a 

1 - 32 1 
- - 

2 - VOU~) E( VI - as) - voaaK( 1/l - a”) E 

(3.5) 

Here K (a) and E (a) are complete elliptic integrals of the first and the second kind, 

respectively. The remaining components can be considered equal to zero with the accu- 

racy of 0 (1). From here it follows that a contribution in the singular stresses u (n) 
at the surface of the crack is given only by the components of theexternal field (JO which 
have index equal to 3. This is in agreement with the results in [5, 61. 

Passing to the narrow crack a --f 0 and 

1 
(&&a = G 7 (B31)ms = & $ (3.6) 

(mm3 = $$ 

which coincides with (2.4) for E --t 0. In the case when the medium has a rhombic 
symmetry, the tensor B,-l has a similar structure and its components can be expressed 
in the general case in terms of elliptic integrals. They become considerably simpler 

for the narrow crack ayd have1 the form 

(3.7) 
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which, obviously, in the particular case of the isotropic medium coincide with (3.6). 
We emphasize that,representing an independent interest, the case of the narrow crack 

not only makes obvious the mechanism of the variation of the stress concentration when 
passing from a needle to a crack, but also allows us to effect the transfer to the plane 

problem if we consider the median sector of the crack. 

4, We consider now the direct investigation of the stresses at the surface of the crack. 
We start with pure extension. Since the components a011 and o,2a according to (3.5)- 
(3.7) do not give a contribution to the singularity, we consider only the extension a083 
along the axis x3 normal to the crack. 

From (1.1). (1.4) and (3.5) - (3.7) we find 

P(n) = B"P33(n)(B~1),3,,a~ (4.1) 

It is convenient to carry out the investigation of J +@ (n) in a local system of coordinates 

x1’, connected at each point of the surface of the ellipsoidal crack with the normal n. 
As a local basis we take e3, = n 

7 e,- = no x es, e,*= n x (no x es) 

no = v&2 he’ + n2e2) 

Here e, are the unit vectors of the coordinate system connected with the axes of the 
ellipsoid, while the vector no is normal to the border of the crack at the point (nr, na, 
0). It is obvious that for the points of the surface, which represent a fundamental inte- 
rest, near the edge, the axes x1’ and 2’ are respectively parallel and normal to the edge, 

With respect to the local axes, the tensor oa’@’ (n) is plane since all components with 
index 3 are equal to zero. This follows from the equi~br~um conditions. 

First we consider the isotropic case. Switching in (4.1) to local coordinates and taking 
into account (1.5). (3.5) and (3.6). we find 

d'l'(n) = vo5,,,,(l - ~2~~), o"'"'(n) = dmax(lJ-- na2), s"'"'(n) = 0 (4.2) 

here for the finite and the narrow crack we have, respectively, 

Thus, for the given load the selected system of coordinates coincides, with the accepted 

degree of accuracy, with the principal axes of the tensor u(n). Since the principal 
stresses o1 = $‘l’ and o2 = 2’2’ u have the same sign, the maximal tangential stress is 

a rnax = l/a 1 Ga I. I t is clear from (4.2) that in the case of extension the largest value 

of the stresses in any cross section normal to the edge is attained for n3 = 0, i. e. on 
the edge itself. 

fn the anisotropic case the computations are similar but more cumbersome. We give 
the final expressions for the stresses o (n) at the surface of a narrow crack in an ortho- 

tropic medium in the cross sections nX = 0 and n, = 0. In the selected local basis 

which in the present case coincides with the principal axes of the tensor u (n), for the 
cross section n2 = 0 we have 

ai (n) = A-lc,, hcps - h$dh2 4 

(Cl2 css - Cl3 c,,) n3%2 um3333 es3 (4.4) 
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u2 (n) = A-l cs6 (~33 - CI~~)~I' (&-') 3333 G,"" 

A = c11cs6 rz: + (c,l cg3 - 2'h3C53 - C13") n?ns" + C33C55~s4 (4.5) 

Here @s-l), sss is given by the expression (3.7). The stresses in the cross section 
nl = 0 are obtained by replacing in the right-hand sides the indices 1 and 6 by 2 and 
4, respectively. 

6. We consider now pure shear. The component c,,ls does not give a contribution 
to the singularity and the situation for oO’” and aOa3 is similar. Therefore we assume 
that the external field coincides with uol’. 

In the isotropic case from (1. l), (1.4) and (3.5) we find 

8’p (n) = 4B@i3 (n) (B;1)1313 %13 (5.1) 

If in the above introduced local system of coordinates we perform a rotation around the 

normal n, i. e. the axis 2’ through an angle 

‘PO = - f arctg $ 

then the new axes are principal for &P’ (n). For the principal stresses we find 

q(n) = al"'(n) = 6,,, ((1 - YJ v'(l - nl')(i --s2)-(1 + yo) n1n31 t5e2) 

63 (n) = C2’(n) = - amax {(I - YJ f/(1 - rz12)(l - ns2) f (1 + YJVSI 

Here for the finite and the narrow crack we have, respectively, 

1 - CP 
5 
max = (1 - vo - aa) E (vi - a*) + voc@K (1/l - ~2) 

&)13 

f, 

1 
L a$3 

Qm==x 4 (5.3) 

The largest absolute value of the principal stresses a, and ur,equal to Urnax, is attained 
at the cross section n2 = 0 at the points 

which are the points of maximum (minimum) of the functions u1 (n) and u2 (n). In this 

cross section ur and a2 are equal to zero at the edge. It is essential that the point of 
maximum is situated at a very small distance from the edge of the crack, which accor- 

ding to (1.3) and (5.2) is Axt = + e2 + 0 (z4) 

We can also show that the characteristic width of the peak is of order E. By varying 
the cross section from n2 = 0 to n, = 0 the magnitude of the peak decreases while 
the point of maximum approaches the edge coinciding with it for nl = 0. For the 

cross sections in which ul and uzare of the same sign, the character of the variation of 
Zmax is evident. In particular, in the cross section n2 = 0 the quantity ~~~~ has a 
sharp peak of height umax / 2 at the point n* and vanishes at the edge. In the case 
when u1 and u2 have different signs 

IT ,l,XS = (1 - v0) &lax V(J - %“) (1 - ns") 

This quantity attains its maximum value equal to (1 - Y,,) Umax, at the edge in the 
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cross section n1 = 0. 
Thus, in the case of shear, a curious increase of stresses takes place, which, if not taken 

into account, will lead by numerical computations to qualitatively irregular, results on 
the stress concentration in the crack. This shows the necessity of investigating the stres- 

ses not only in the characteristic points of the contour of the crack, but also on its entire 
surface. 

A similar effect takes place in an anisotropic medium. The principal stresses at the 

surface of a narrow crack in an orthotropic medium in the cross section n2 = 0 are 

u1 (n) = - 4A-l cs5 [(cllc23 - c12c13) n12 + 

( c12c33 - c13c23) n32] nln3 @,,-l) 1313 %13 

o2 (4 = - 4A-lc,, kllc33 - c132) nln3 (B,-l) 1313 o,,13 

Here A and @a-‘) i3r3 are given by the expressions (4.5) and (3.7). respectively. 
In the cross section nl = 0 

al(n) = - 52 (n) = 4 ,,,,~~~~~.,L,2 (&?)1~1~ a,13 

Obviously, as in the isotropic case, the increase effect takes place in the cross section 

n2 = 0. 
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